PV Basics and Global Scenario

Dr. Sudhir KumarChief Executive
Green Energy Solutions, Pune

Mob: +91 96650 20206 drsk22@gmail.com

Solar Photovoltaic: Basics and Energetics

Common Terms

- Energy, Power, kW, MW, kWh, MWh, PLF, kCal, downtime, CUF, Outage, performance ratio, availability factor, grid availability, specific prodn. (kWh/kWp/yr),
- Sunlight as energy? IR, Visible, UV
- 100----400----800----2500 (nm)
- Wavelength vs Energy
- \star E = hc/ λ (where, hc = 1240 eV·nm)
 - **→** h is planks constant 6.626x10⁻³⁴ j.s.
 - > c is speed of light 3x108 m/s
 - λ is wavelength of light in nm

Useful Solar Radiation

- Electromagnetic radiation emitted by the sun as Heat, Light & Disinfectant
- 1367.7 W/m² outer space, 1000 W/m² on earth surface
- Direct radiation
- Diffuse radiation
- Two together referred as global radiation

Solar Radiation Measurements

- Global horizontal irradiance (GHI): Pyranometer
- Total: Direct + Diffuse
- Useful for PV

Solar Radiation Measurements

- Direct Normal Irradiance (DNI): Pyrheliometer
- Direct on perpendicular surface
- Useful for Reflectors, CSP

Solar Radiation Measurements

- ❖Solar radiation Unit kWh/m²/day
- Power project :
 - CSP min. DNI-1800 kWh/m²/yr (Reported)
 - SPV min. GHI-1500 kWh/m²/yr (Suggested)
- Rooftop solar: No standard
- Radiation of site needed for designing
- Actual ground data: Not always available
- Derived data: NASA, METONORM, GeoModel

Winter or Summer Optimization

8

Photovoltaic cell

- Silicon n-type film on p-type chip (0.3 mm)
- Top metal grid + bus bar (photolithography)
- Bottom full metal cover e.g. Silver
- Positive (bottom) & Negative (top) connections

Photovoltaic Effect

- Light energy strikes juction
- Electrons flow: inside from p- to n-
- ❖ Outer curcuit: from n- to p-
- Suitable load attached for use

Solar cell material

Ideal solar cell material:

- Must be a solid semiconductor
- Must have suitable band gap
- Responsive to visible range
- Stable under outdoor use
- Should have affordable cost
- Abundant availability in nature

Efficiency vs. Band gap

- ❖Ideal material close to 1.54 e.V.
- Corresponds to red wavelength

Semiconductor Band Gaps: Examples

S.N.	Material	Chemical formula	Band Gap (e.V.) at 300K
1	Silicon	Si	1.11
2	Silicon dioxide	SiO ₂	9
3	Germanium	Ge	0.67
4	Aluminium antimonide	AISb	1.6
5	Diamond	c	5.5
6	Gallium(III) phosphide	GaP	2.26
7	Gallium(III) arsenide	GaAs	1.43
8	Gallium(II) sulfide	GaS	2.5
9	Indium(III) phosphide	InP	1.35
10	Zinc selenide	ZnSe	2.7
11	Cadmium sulfide	CdS	2.42
12	Cadmium selenide	CdSe	1.73
13	Cadmium telluride	CdTe	1.49
14	Copper(II) oxide	Cu2O	2.17

Types of PV Cells

- Crystalline
 - Mono-crystalline silicon solar cells
 - Polycrystalline silicon solar cells
- Thin film
 - Amorphous silicon
 - Cadmium telluride
 - Copper indium di-selenide

Modules

- Hermetically sealed
- Two layers of ethylene vinyl acetate (EVA) encapsulant
- Support:
 - Top toughened glass
 - **❖** Bottom DuPont™ Tedlar® (PVF) polyvinyl fluoride sheet
- Sturdy, suitable for outdoor use

Cell, Module, Array

- Cells connected in series: Voltage added
- Cells connected parallel: Current added
- Parallel-series combination decides wattage, voltage
- Same logic with modules to form array
- Same logic with arrays to form solar field

Parameter	Crystalline	Thin Film				
Types of Materials	Silicon	Amorphous Silicon, CdS, CdTe, CIGS etc.				
Power Efficiency	12-19%	6-11%				
Commercial maturity of the technology	Well Developed Long experience on Commercial plant	Under development Less experience on commercial plants				
Output per MW installed	High	Varies as per sunlight condition				
Cell cost	Slightly higher cost per Watt	Lower cost per Watt				
Temperature Effects	Temperature variation affects the output	Lesser impact of temperature variations				
Module Weight	Light weight modules	Heavier modules				
Land Requirement	Lesser space required per MW	Largest space requirement				
Availability	Easily available	Limited supply				
Module quantity	Lesser nos. required due to high efficiency	More modules required				
Plant Maintenance	Less maintenance required after installation so lower cost	Highest maintenance required, so highest maintenance cost				
Health hazards	Made from non toxic material (Si)	Toxic materials used for thin films (CdS, CdTe)				
De-rating	Very low de-rating with time	High de-rating factor				

Suitability for Rooftop Applications

- Use the polycrystalline modules solely because
- Slight cost advantage,
- Relatively easier availability with vendors
- Good efficiency
- Least degradation
- Local availability and
- Better life of cell

The Term: ROOFTOP

- * "Rooftop solar PV system" means the grid interactive solar photo voltaic power system installed on the rooftops/ground mounted or open land of consumer premises that uses sunlight for direct conversion into electricity through photo voltaic technology.
- ❖ "Net metering" means an arrangement for measurement of energy in a system under which rooftop solar PV system installed at eligible consumer premises delivers surplus electricity, if any, to the Distribution Licensee after off-setting the electricity supplied by Distribution Licensee during the applicable billing period.

Rooftop Relevance Today

Evolution Period	Affordable to				
1980 - 1989	Research laboratories, Space centers				
1990-1999	Off-grid, Govt. Schemes, Remote area				
2000-2009	Grid scale, Govt. supported, Institutes				
2010-2019	Private, Commercial, Individual roofs√				

Rooftop Concepts

CAPEX	OPEX*				
Project owned by roof owner/consumer	Project owned by project developer/supplier				
Roof owner/consumer responsible for O&M of	Roof owner/consumer not responsible for O&M				
system after initial 1-2 year period	O&M is responsibility of project developer				
Can't be converted to OPEX model at a later date	Can be converted into CAPEX at a pre-decided				
	date (option to buy back)				
Power to be used for captive consumption;	Power can be sold to roof owner;				
surplus power can be sold to distribution utility	Power can be sold to distribution utility;				
	Power can be sold to third party**				

^{*}project developer is usually a Renewable Energy Service Company (RESCO)

^{**}some state regulations do not permit this mode of operation; should be checked at the time of project conception/planning

Billing Sample

Date of Print Out: 24.07.2015

BSES Raidhani Power Ltd.

Meter Details Annexure

Name: M/s: THE SECRETARY

Sanctioned Load :224.00 (KW)

CA No.

FBILL Customer

Blifing NATIONAL PDODUCTIVITY COU LODHI ROAD Contract Demand :353.00 (KVA)

Energisation Date : 17.05.2002

Address NEW DELHI 110003

MDI

:192.00 (KVA)

Walking Sequence: NZ2KC0027A0AA Bill Basis

Meter Type

3PSK

Power Factor

Taniff Category

- 947

Supply Type

:HT(11KV)

Pole No

NA

Bill No.

: Actual

Supply Address: NATIONAL PDODUCTIVITY COU PLOT 5&

INSTITUTIONAL AREA NEW DELHI 110003

Mobile / Tel No

District / Division Nizamuddin

Meter Reading Status : MR

Bill Month JUL-15 Bill Date

:13-07-2015

:KC Cycle No.

:Non-Domestic [HT]

Customer Care Centre No. 39999707

Net Meter Consumption Details (Date of Reading : 30-06-2015)													
B/F Units (If any)	Export Reading		Import Reading		Net Difference		Moderated Units			C/F Units (If any)			
	Normal	Peak	Offpeak	Normal	Peak	Offpeak	Normal	Peak	Offpeak	Normal	Peak	Offpeak	the analys
0	156	78	0	16020	8742	1134	15864	8664	1134	15864	10397	851	0

(Consumption in the above table are in KWhiki An, as applicable)

Moderated units: Peak units are increased by 20% and offpeak units decreased by 25%

22

Positives: Big Projections

- Benefits:
 - Quick installation
 - Zero emission
 - Low noise
 - Very low maintenance
 - Reliable
 - Long life
 - On site production
 - Affordable
- MNRE rooftop target: 40,000MW (2022)
- 2016-18: 2000, 4000,4000 MW
- Fiscal and financial incentives

Let us look at the big pictures (IEA Report)

Figure 1: Global cumulative growth of PV capacity

Source: Unless otherwise indicated, all tables and figures derive from IEA data and analysis.

KEY POINT: Cumulative PV capacity grew at 49%/yr on average since 2003.

Figure 2: PV manufacturing by countries

Source: SPV Market Research (2014), Photovoltaic manufacturer Shipments: Capacity, Price & Revenues 2013/2013, Report SPV-Supply 2, April.

Figure 8: Regional production of PV electricity envisioned in this roadmap

KEY POINT: in the hi-Ren scenario, PV provides 16% of global electricity by 2050, and China has a 35% share of the total PV electricity production.

Swanson's Law

Richard Swanson: Founder SunPower Corporation solar panel manuf.
 Module price drop 20 percent every doubling of cumulative shipment

The Swanson effect

Price of crystalline silicon photovoltaic cells, \$ per watt

Economist.com/graphicdetail

Figure 10: Past modules prices and projection to 2035 based on learning curve

PV Investment Cost Projection

The Future Ahead

- Bright Future Catalyzed by Efficient & Cheap Battery e.g. Lithium Ion, NiMH
- ❖ PV + Wind + Storage Grid power cheaper
- Every house Own power plant with storage– 100% free from grid
- Coal/Oil/Gas power project only for industries/large commercial entities
- 100% cars/ Two wheelers Battery operated
 Charged by solar No traffic pollution

The Future Ahead

- Oil Only for heavy duty transportation
- Sea Wave/Tidal Major source of power
- No need of green corridor of grid saving
- 100% lighting LED only Great saving
- Solar passive architecture Energy efficient buildings – Mandatory
- Solar supported Digital India A reality Even in rural/ remote areas

THANK YOU

Dr. Sudhir Kumar, Chief Executive, Green Energy Solutions,

8/15, Mazda Deluxe Homes, Porwal Park, Tank Road,

Off: Alandi Road, Yerwada, Pune - 411006, India.

Cell No. +91-9665020206, E-mail: <u>drsk22@gmail.com</u>